Ju, S. et al. Fabrication of fully transparent nanowire transistors for transparent and flexible electronics. Nat. Nanotechnol. 2, 378–384 (2007).
Google Scholar
Oh, J. Y. & Bao, Z. Second skin enabled by advanced electronics. Adv. Sci. 6, 1900186 (2019).
Google Scholar
Karnaushenko, D. et al. High‐performance magnetic sensorics for printable and flexible electronics. Adv. Mater. 27, 880–885 (2015).
Google Scholar
Han, S. T. et al. An overview of the development of flexible sensors. Adv. Mater. 29, 1700375 (2017).
Google Scholar
Wang, T. et al. Flexible transparent electronic gas sensors. Small 12, 3748–3756 (2016).
Google Scholar
Lim, Y. W., Jin, J. & Bae, B. S. Optically transparent multiscale composite films for flexible and wearable electronics. Adv. Mater. 32, 1907143 (2020).
Google Scholar
Tan, Y. J. et al. A transparent, self-healing and high-κ dielectric for low-field-emission stretchable optoelectronics. Nat. Mater. 19, 182–188 (2020).
Google Scholar
Zhao, C., Liu, Y., Beirne, S., Razal, J. & Chen, J. Recent development of fabricating flexible micro‐supercapacitors for wearable devices. Adv. Mater. Technol. 3, 1800028 (2018).
Google Scholar
Yan, Z., Luo, S., Li, Q., Wu, Z. S. & Liu, S. Recent advances in flexible wearable supercapacitors: properties, fabrication, and applications. Adv. Sci. 11, 2302172 (2023).
Google Scholar
Pierre Claver, U. & Zhao, G. Recent progress in flexible pressure sensors based electronic skin. Adv. Eng. Mater. 23, 2001187 (2021).
Google Scholar
Ma, L. et al. Full‐textile wireless flexible humidity sensor for human physiological monitoring. Adv. Funct. Mater. 29, 1904549 (2019).
Google Scholar
Cheng, S. et al. Ultrathin hydrogel films toward breathable skin‐integrated electronics. Adv. Mater. 35, 2206793 (2023).
Google Scholar
Makushko, P. et al. Flexible magnetoreceptor with tunable intrinsic logic for on‐skin touchless human‐machine interfaces. Adv. Funct. Mater. 31, 2101089 (2021).
Google Scholar
Dai, Y., Hu, H., Wang, M., Xu, J. & Wang, S. Stretchable transistors and functional circuits for human-integrated electronics. Nat. Electron. 4, 17–29 (2021).
Google Scholar
Hamedi, M. et al. Integrating electronics and microfluidics on paper. Adv. Mater. 28, 5054 (2016).
Google Scholar
Yamagishi, K. et al. Flexible and stretchable liquid‐metal microfluidic electronics using directly printed 3D microchannel networks. Adv. Funct. Mater. 34, 2311219 (2023).
Utz, M. & Landers, J. Magnetic resonance and microfluidics. Science 330, 1056–1058 (2010).
Google Scholar
Ju, H. et al. A locally actuatable soft robotic film for actively reconfiguring shapes of flexible electronics. Soft Robot. 9, 767–775 (2022).
Google Scholar
Kaltenbrunner, M. et al. An ultra-lightweight design for imperceptible plastic electronics. Nature 499, 458–463 (2013).
Google Scholar
Yaqing, L., Ke, H., Geng, C., Ru, L. W. & Xiaodong, C. Nature-inspired structural materials for flexible electronic devices. Chem. Rev. 117, 12893 (2017).
Google Scholar
Keplinger, T., Wittel, F. K., Rüggeberg, M. & Burgert, I. Wood derived cellulose scaffolds—processing and mechanics. Adv. Mater. 33, 2001375 (2021).
Google Scholar
De France, K., Zeng, Z., Wu, T. & Nyström, G. Functional materials from nanocellulose: utilizing structure–property relationships in bottom‐up fabrication. Adv. Mater. 33, 2000657 (2021).
Google Scholar
Yue, X. et al. Tough and moldable sustainable cellulose‐based structural materials via multiscale interface engineering. Adv. Mater. 36, 2306451 (2024).
Google Scholar
Liu, R. et al. Producing a room temperature phosphorescent film from natural wood using a top‐down approach. Adv. Funct. Mater. 34, 2312254 (2024).
Google Scholar
Kumar, A., Jyske, T. & Petric, M. Delignified wood from understanding the hierarchically aligned cellulosic structures to creating novel functional materials: a review. Adv. Sustain. Syst. 5, 2000251 (2021).
Google Scholar
Zhang, T. et al. Flexible transparent sliced veneer for alternating current electroluminescent devices. ACS Sustain. Chem. Eng. 7, 11464–11473 (2019).
Google Scholar
Tang, Q., Fang, L., Wang, Y., Zou, M. & Guo, W. Anisotropic flexible transparent films from remaining wood microstructures for screen protection and AgNW conductive substrate. Nanoscale 10, 4344–4353 (2018).
Google Scholar
Zhang, T. et al. Constructing a novel electroluminescent device with high-temperature and high-humidity resistance based on a flexible transparent wood film. ACS Appl. Mater. Interfaces 11, 36010–36019 (2019).
Google Scholar
Fu, Q., Chen, Y. & Sorieul, M. Wood-based flexible electronics. ACS Nano 14, 3528–3538 (2020).
Google Scholar
Zhu, H. et al. Wood-derived materials for green electronics, biological devices, and energy applications. Chem. Rev. 116, 9305–9374 (2016).
Google Scholar
Jiang, F. et al. Wood‐based nanotechnologies toward sustainability. Adv. Mater. 30, 1703453 (2018).
Google Scholar
Jung, Y. H. et al. High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nat. Commun. 6, 7170 (2015).
Google Scholar
Dai, S. et al. Intrinsically ionic conductive cellulose nanopapers applied as all solid dielectrics for low voltage organic transistors. Nat. Commun. 9, 2737 (2018).
Google Scholar
Park, J. et al. Flexible and transparent organic phototransistors on biodegradable cellulose nanofibrillated fiber substrates. Adv. Opt. Mater. 6, 1701140 (2018).
Google Scholar
Kumar, A., Jyske, T. & Petric, M. Delignified wood from understanding the hierarchically aligned cellulosic structures to creating novel functional materials: a review. Adv. Sustain. Syst. 5, 45 (2021).
Google Scholar
Tran, V. C. et al. Electrical current modulation in wood electrochemical transistor. Proc. Natl Acad. Sci. USA 120, e2218380120 (2023).
Google Scholar
Jakob, M. et al. The strength and stiffness of oriented wood and cellulose-fibre materials: A review. Prog. Mater. Sci. 125, 100916 (2022).
Google Scholar
Han, X., Ye, Y., Lam, F., Pu, J. & Jiang, F. Hydrogen-bonding-induced assembly of aligned cellulose nanofibers into ultrastrong and tough bulk materials. J. Mater. Chem. A. 7, 27023–27031 (2019).
Google Scholar
Liu, G., Zhao, Y., Wu, G. & Lu, J. Origami and 4D printing of elastomer-derived ceramic structures. Sci. Adv. 4, eaat0641 (2018).
Google Scholar
Overvelde, J. T., Weaver, J. C., Hoberman, C. & Bertoldi, K. Rational design of reconfigurable prismatic architected materials. Nature 541, 347–352 (2017).
Google Scholar
Rus, D. & Tolley, M. T. Design, fabrication and control of origami robots. Nat. Rev. Mater. 3, 101–112 (2018).
Google Scholar
Treml, B., Gillman, A., Buskohl, P. & Vaia, R. Origami mechanologic. Proc. Natl Acad. Sci. USA 115, 6916–6921 (2018).
Google Scholar
Chen, Y., Peng, R. & You, Z. Origami of thick panels. Science 349, 396–400 (2015).
Google Scholar
Yan, W. et al. Origami-based integration of robots that sense, decide, and respond. Nat. Commun. 14, 1553 (2023).
Google Scholar
Xu, Y. et al. Pencil–paper on-skin electronics. Proc. Natl Acad. Sci. USA 117, 18292–18301 (2020).
Google Scholar
Niu, G. et al. Pencil-on-paper humidity sensor treated with NaCl solution for health monitoring and skin characterization. Nano Lett. 23, 1252–1260 (2023).
Google Scholar
Li, S., Chu, J., Li, B., Chang, Y. & Pan, T. Handwriting iontronic pressure sensing Origami. ACS Appl. Mater. Interfaces 11, 46157–46164 (2019).
Google Scholar
Yan, J. et al. Direct-ink writing 3D printed energy storage devices: From material selectivity, design and optimization strategies to diverse applications. Mater. Today 54, 110–152 (2022).
Google Scholar
Liu, C. et al. 3D printing of customized lignocellulose nanofibril aerogels for efficient thermal insulation. Addit. Manuf. 78, 103841 (2023).
Google Scholar
Zhou, G., Li, M.-C., Liu, C., Wu, Q. & Mei, C. 3D Printed Ti3C2Tx MXene/Cellulose Nanofiber architectures for solid-state supercapacitors: ink rheology, 3D printability, and electrochemical performance. Adv. Funct. Mater. 32, 2109593 (2022).
Google Scholar
Na, J. H. et al. Programming reversibly self‐folding origami with micropatterned photo‐crosslinkable polymer trilayers. Adv. Mater. 27, 79–85 (2015).
Google Scholar
Ze, Q. et al. Spinning-enabled wireless amphibious origami millirobot. Nat. Commun. 13, 3118 (2022).
Google Scholar
Cheng, Y. C., Lu, H. C., Lee, X., Zeng, H. & Priimagi, A. Kirigami‐based light‐induced shape‐morphing and locomotion. Adv. Mater. 32, 1906233 (2020).
Google Scholar
Fu, Q., Ansari, F., Zhou, Q. & Berglund, L. A. Wood nanotechnology for strong, mesoporous, and hydrophobic biocomposites for selective separation of oil/water mixtures. ACS Nano 12, 2222–2230 (2018).
Google Scholar
Zhu, S. et al. Transparent wood-based functional materials via a top-down approach. Prog. Mater. Sci. 132, 101025 (2023).
Google Scholar
Wang, C. et al. Fabrication of robust paper-based electronics by adapting conventional paper making and coupling with wet laser writing. ACS Sustain. Chem. Eng. 11, 9782 (2023).
Google Scholar
Yang, X., Shi, K., Zhitomirsky, I. & Cranston, E. D. Cellulose nanocrystal aerogels as universal 3D lightweight substrates for supercapacitor materials. Adv. Mater. 27, 6104–6109 (2015).
Google Scholar
Zhou, G. et al. 3D printed nitrogen-doped thick carbon architectures for supercapacitor: ink rheology and electrochemical performance. Adv. Sci. 10, 2206320 (2023).
Google Scholar
Yang, X. & Berglund, L. A. Structural and ecofriendly holocellulose materials from wood: microscale fibers and nanoscale fibrils. Adv. Mater. 33, 2001118 (2021).
Google Scholar
Mietner, J. B., Jiang, X., Edlund, U., Saake, B. & Navarro, J. R. 3D printing of a bio-based ink made of cross-linked cellulose nanofibrils with various metal cations. Sci. Rep. 11, 6461 (2021).
Google Scholar
Li, K. et al. Self‐densification of highly mesoporous wood structure into a strong and transparent film. Adv. Mater. 32, 2003653 (2020).
Google Scholar
Wang, Y. et al. Organic crystalline materials in flexible electronics. Chem. Soc. Rev. 48, 1492–1530 (2019).
Google Scholar
Hajian, A., Wang, Z., Berglund, L. A. & Hamedi, M. M. Cellulose nanopaper with monolithically integrated conductive micropatterns. Adv. Electron. Mater. 5, 1800924 (2019).
Google Scholar
Biswas, S. K. et al. Thermally superstable cellulosic-nanorod-reinforced transparent substrates featuring microscale surface patterns. ACS Nano 13, 2015–2023 (2019).
Google Scholar
Apostolopoulou-Kalkavoura, V., Gordeyeva, K., Lavoine, N. & Bergström, L. Thermal conductivity of hygroscopic foams based on cellulose nanofibrils and a nonionic polyoxamer. Cellulose 25, 1117–1126 (2018).
Google Scholar
Chen, S., Chen, J., Zhang, X., Li, Z.-Y. & Li, J. Kirigami/origami: unfolding the new regime of advanced 3D microfabrication/nanofabrication with “folding. Light Sci. Appl. 9, 75 (2020).
Google Scholar
Yi, S. et al. High-throughput fabrication of soft magneto-origami machines. Nat. Commun. 13, 4177 (2022).
Google Scholar
Liu, Y., Shaw, B., Dickey, M. D. & Genzer, J. Sequential self-folding of polymer sheets. Sci. Adv. 3, e1602417 (2017).
Google Scholar
Silverberg, J. L. et al. Origami structures with a critical transition to bistability arising from hidden degrees of freedom. Nat. Mater. 14, 389–393 (2015).
Google Scholar
Al-Mulla, T. & Buehler, M. J. Folding creases through bending. Nat. Mater. 14, 366–368 (2015).
Google Scholar
Zheng, K. et al. Modularized paper actuator based on shape memory alloy, printed heater, and Origami. Adv. Intell. Syst. 4, 2200194 (2022).
Google Scholar
Miccoli, I., Edler, F., Pfnür, H. & Tegenkamp, C. The 100th anniversary of the four-point probe technique: the role of probe geometries in isotropic and anisotropic systems. J. Phys. Condens. Matter 27, 223201 (2015).
Google Scholar
link
More Stories
Bendable electronic parts can heat up by themselves to lower the manufacturing temperature barrier
Flexible Electronics Market to Reach USD 75.04 Billion by
Printed Electronics Market to Grow by USD 68.68 Billion (2024-2028), Rising Demand for Flexible Displays Drives Growth, Report Highlights AI Evolution