December 4, 2024

Flex Tech

Innovation in Every Curve

Programmable and flexible wood-based origami electronics

Programmable and flexible wood-based origami electronics
  • Ju, S. et al. Fabrication of fully transparent nanowire transistors for transparent and flexible electronics. Nat. Nanotechnol. 2, 378–384 (2007).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • Oh, J. Y. & Bao, Z. Second skin enabled by advanced electronics. Adv. Sci. 6, 1900186 (2019).

    Article 

    Google Scholar 

  • Karnaushenko, D. et al. High‐performance magnetic sensorics for printable and flexible electronics. Adv. Mater. 27, 880–885 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Han, S. T. et al. An overview of the development of flexible sensors. Adv. Mater. 29, 1700375 (2017).

    Article 
    ADS 

    Google Scholar 

  • Wang, T. et al. Flexible transparent electronic gas sensors. Small 12, 3748–3756 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Lim, Y. W., Jin, J. & Bae, B. S. Optically transparent multiscale composite films for flexible and wearable electronics. Adv. Mater. 32, 1907143 (2020).

    Article 
    CAS 

    Google Scholar 

  • Tan, Y. J. et al. A transparent, self-healing and high-κ dielectric for low-field-emission stretchable optoelectronics. Nat. Mater. 19, 182–188 (2020).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • Zhao, C., Liu, Y., Beirne, S., Razal, J. & Chen, J. Recent development of fabricating flexible micro‐supercapacitors for wearable devices. Adv. Mater. Technol. 3, 1800028 (2018).

    Article 

    Google Scholar 

  • Yan, Z., Luo, S., Li, Q., Wu, Z. S. & Liu, S. Recent advances in flexible wearable supercapacitors: properties, fabrication, and applications. Adv. Sci. 11, 2302172 (2023).

    Article 

    Google Scholar 

  • Pierre Claver, U. & Zhao, G. Recent progress in flexible pressure sensors based electronic skin. Adv. Eng. Mater. 23, 2001187 (2021).

    Article 

    Google Scholar 

  • Ma, L. et al. Full‐textile wireless flexible humidity sensor for human physiological monitoring. Adv. Funct. Mater. 29, 1904549 (2019).

    Article 
    CAS 

    Google Scholar 

  • Cheng, S. et al. Ultrathin hydrogel films toward breathable skin‐integrated electronics. Adv. Mater. 35, 2206793 (2023).

    Article 
    CAS 

    Google Scholar 

  • Makushko, P. et al. Flexible magnetoreceptor with tunable intrinsic logic for on‐skin touchless human‐machine interfaces. Adv. Funct. Mater. 31, 2101089 (2021).

    Article 
    CAS 

    Google Scholar 

  • Dai, Y., Hu, H., Wang, M., Xu, J. & Wang, S. Stretchable transistors and functional circuits for human-integrated electronics. Nat. Electron. 4, 17–29 (2021).

    Article 
    CAS 

    Google Scholar 

  • Hamedi, M. et al. Integrating electronics and microfluidics on paper. Adv. Mater. 28, 5054 (2016).

    Article 
    MathSciNet 
    PubMed 
    CAS 

    Google Scholar 

  • Yamagishi, K. et al. Flexible and stretchable liquid‐metal microfluidic electronics using directly printed 3D microchannel networks. Adv. Funct. Mater. 34, 2311219 (2023).

  • Utz, M. & Landers, J. Magnetic resonance and microfluidics. Science 330, 1056–1058 (2010).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • Ju, H. et al. A locally actuatable soft robotic film for actively reconfiguring shapes of flexible electronics. Soft Robot. 9, 767–775 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Kaltenbrunner, M. et al. An ultra-lightweight design for imperceptible plastic electronics. Nature 499, 458–463 (2013).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • Yaqing, L., Ke, H., Geng, C., Ru, L. W. & Xiaodong, C. Nature-inspired structural materials for flexible electronic devices. Chem. Rev. 117, 12893 (2017).

    Article 

    Google Scholar 

  • Keplinger, T., Wittel, F. K., Rüggeberg, M. & Burgert, I. Wood derived cellulose scaffolds—processing and mechanics. Adv. Mater. 33, 2001375 (2021).

    Article 
    CAS 

    Google Scholar 

  • De France, K., Zeng, Z., Wu, T. & Nyström, G. Functional materials from nanocellulose: utilizing structure–property relationships in bottom‐up fabrication. Adv. Mater. 33, 2000657 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Yue, X. et al. Tough and moldable sustainable cellulose‐based structural materials via multiscale interface engineering. Adv. Mater. 36, 2306451 (2024).

    Article 
    CAS 

    Google Scholar 

  • Liu, R. et al. Producing a room temperature phosphorescent film from natural wood using a top‐down approach. Adv. Funct. Mater. 34, 2312254 (2024).

    Article 
    CAS 

    Google Scholar 

  • Kumar, A., Jyske, T. & Petric, M. Delignified wood from understanding the hierarchically aligned cellulosic structures to creating novel functional materials: a review. Adv. Sustain. Syst. 5, 2000251 (2021).

    Article 
    CAS 

    Google Scholar 

  • Zhang, T. et al. Flexible transparent sliced veneer for alternating current electroluminescent devices. ACS Sustain. Chem. Eng. 7, 11464–11473 (2019).

    Article 
    CAS 

    Google Scholar 

  • Tang, Q., Fang, L., Wang, Y., Zou, M. & Guo, W. Anisotropic flexible transparent films from remaining wood microstructures for screen protection and AgNW conductive substrate. Nanoscale 10, 4344–4353 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Zhang, T. et al. Constructing a novel electroluminescent device with high-temperature and high-humidity resistance based on a flexible transparent wood film. ACS Appl. Mater. Interfaces 11, 36010–36019 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Fu, Q., Chen, Y. & Sorieul, M. Wood-based flexible electronics. ACS Nano 14, 3528–3538 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Zhu, H. et al. Wood-derived materials for green electronics, biological devices, and energy applications. Chem. Rev. 116, 9305–9374 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Jiang, F. et al. Wood‐based nanotechnologies toward sustainability. Adv. Mater. 30, 1703453 (2018).

    Article 

    Google Scholar 

  • Jung, Y. H. et al. High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nat. Commun. 6, 7170 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Dai, S. et al. Intrinsically ionic conductive cellulose nanopapers applied as all solid dielectrics for low voltage organic transistors. Nat. Commun. 9, 2737 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Park, J. et al. Flexible and transparent organic phototransistors on biodegradable cellulose nanofibrillated fiber substrates. Adv. Opt. Mater. 6, 1701140 (2018).

    Article 

    Google Scholar 

  • Kumar, A., Jyske, T. & Petric, M. Delignified wood from understanding the hierarchically aligned cellulosic structures to creating novel functional materials: a review. Adv. Sustain. Syst. 5, 45 (2021).

    Article 

    Google Scholar 

  • Tran, V. C. et al. Electrical current modulation in wood electrochemical transistor. Proc. Natl Acad. Sci. USA 120, e2218380120 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Jakob, M. et al. The strength and stiffness of oriented wood and cellulose-fibre materials: A review. Prog. Mater. Sci. 125, 100916 (2022).

    Article 
    CAS 

    Google Scholar 

  • Han, X., Ye, Y., Lam, F., Pu, J. & Jiang, F. Hydrogen-bonding-induced assembly of aligned cellulose nanofibers into ultrastrong and tough bulk materials. J. Mater. Chem. A. 7, 27023–27031 (2019).

    Article 
    CAS 

    Google Scholar 

  • Liu, G., Zhao, Y., Wu, G. & Lu, J. Origami and 4D printing of elastomer-derived ceramic structures. Sci. Adv. 4, eaat0641 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Overvelde, J. T., Weaver, J. C., Hoberman, C. & Bertoldi, K. Rational design of reconfigurable prismatic architected materials. Nature 541, 347–352 (2017).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • Rus, D. & Tolley, M. T. Design, fabrication and control of origami robots. Nat. Rev. Mater. 3, 101–112 (2018).

    Article 
    ADS 

    Google Scholar 

  • Treml, B., Gillman, A., Buskohl, P. & Vaia, R. Origami mechanologic. Proc. Natl Acad. Sci. USA 115, 6916–6921 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Chen, Y., Peng, R. & You, Z. Origami of thick panels. Science 349, 396–400 (2015).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • Yan, W. et al. Origami-based integration of robots that sense, decide, and respond. Nat. Commun. 14, 1553 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Xu, Y. et al. Pencil–paper on-skin electronics. Proc. Natl Acad. Sci. USA 117, 18292–18301 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Niu, G. et al. Pencil-on-paper humidity sensor treated with NaCl solution for health monitoring and skin characterization. Nano Lett. 23, 1252–1260 (2023).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • Li, S., Chu, J., Li, B., Chang, Y. & Pan, T. Handwriting iontronic pressure sensing Origami. ACS Appl. Mater. Interfaces 11, 46157–46164 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Yan, J. et al. Direct-ink writing 3D printed energy storage devices: From material selectivity, design and optimization strategies to diverse applications. Mater. Today 54, 110–152 (2022).

    Article 

    Google Scholar 

  • Liu, C. et al. 3D printing of customized lignocellulose nanofibril aerogels for efficient thermal insulation. Addit. Manuf. 78, 103841 (2023).

    CAS 

    Google Scholar 

  • Zhou, G., Li, M.-C., Liu, C., Wu, Q. & Mei, C. 3D Printed Ti3C2Tx MXene/Cellulose Nanofiber architectures for solid-state supercapacitors: ink rheology, 3D printability, and electrochemical performance. Adv. Funct. Mater. 32, 2109593 (2022).

    Article 
    CAS 

    Google Scholar 

  • Na, J. H. et al. Programming reversibly self‐folding origami with micropatterned photo‐crosslinkable polymer trilayers. Adv. Mater. 27, 79–85 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Ze, Q. et al. Spinning-enabled wireless amphibious origami millirobot. Nat. Commun. 13, 3118 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Cheng, Y. C., Lu, H. C., Lee, X., Zeng, H. & Priimagi, A. Kirigami‐based light‐induced shape‐morphing and locomotion. Adv. Mater. 32, 1906233 (2020).

    Article 
    CAS 

    Google Scholar 

  • Fu, Q., Ansari, F., Zhou, Q. & Berglund, L. A. Wood nanotechnology for strong, mesoporous, and hydrophobic biocomposites for selective separation of oil/water mixtures. ACS Nano 12, 2222–2230 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Zhu, S. et al. Transparent wood-based functional materials via a top-down approach. Prog. Mater. Sci. 132, 101025 (2023).

    Article 
    CAS 

    Google Scholar 

  • Wang, C. et al. Fabrication of robust paper-based electronics by adapting conventional paper making and coupling with wet laser writing. ACS Sustain. Chem. Eng. 11, 9782 (2023).

    Article 
    CAS 

    Google Scholar 

  • Yang, X., Shi, K., Zhitomirsky, I. & Cranston, E. D. Cellulose nanocrystal aerogels as universal 3D lightweight substrates for supercapacitor materials. Adv. Mater. 27, 6104–6109 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Zhou, G. et al. 3D printed nitrogen-doped thick carbon architectures for supercapacitor: ink rheology and electrochemical performance. Adv. Sci. 10, 2206320 (2023).

    Article 
    CAS 

    Google Scholar 

  • Yang, X. & Berglund, L. A. Structural and ecofriendly holocellulose materials from wood: microscale fibers and nanoscale fibrils. Adv. Mater. 33, 2001118 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Mietner, J. B., Jiang, X., Edlund, U., Saake, B. & Navarro, J. R. 3D printing of a bio-based ink made of cross-linked cellulose nanofibrils with various metal cations. Sci. Rep. 11, 6461 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Li, K. et al. Self‐densification of highly mesoporous wood structure into a strong and transparent film. Adv. Mater. 32, 2003653 (2020).

    Article 
    CAS 

    Google Scholar 

  • Wang, Y. et al. Organic crystalline materials in flexible electronics. Chem. Soc. Rev. 48, 1492–1530 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Hajian, A., Wang, Z., Berglund, L. A. & Hamedi, M. M. Cellulose nanopaper with monolithically integrated conductive micropatterns. Adv. Electron. Mater. 5, 1800924 (2019).

    Article 

    Google Scholar 

  • Biswas, S. K. et al. Thermally superstable cellulosic-nanorod-reinforced transparent substrates featuring microscale surface patterns. ACS Nano 13, 2015–2023 (2019).

    PubMed 
    CAS 

    Google Scholar 

  • Apostolopoulou-Kalkavoura, V., Gordeyeva, K., Lavoine, N. & Bergström, L. Thermal conductivity of hygroscopic foams based on cellulose nanofibrils and a nonionic polyoxamer. Cellulose 25, 1117–1126 (2018).

    Article 
    CAS 

    Google Scholar 

  • Chen, S., Chen, J., Zhang, X., Li, Z.-Y. & Li, J. Kirigami/origami: unfolding the new regime of advanced 3D microfabrication/nanofabrication with “folding. Light Sci. Appl. 9, 75 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Yi, S. et al. High-throughput fabrication of soft magneto-origami machines. Nat. Commun. 13, 4177 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Liu, Y., Shaw, B., Dickey, M. D. & Genzer, J. Sequential self-folding of polymer sheets. Sci. Adv. 3, e1602417 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Silverberg, J. L. et al. Origami structures with a critical transition to bistability arising from hidden degrees of freedom. Nat. Mater. 14, 389–393 (2015).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • Al-Mulla, T. & Buehler, M. J. Folding creases through bending. Nat. Mater. 14, 366–368 (2015).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • Zheng, K. et al. Modularized paper actuator based on shape memory alloy, printed heater, and Origami. Adv. Intell. Syst. 4, 2200194 (2022).

    Article 

    Google Scholar 

  • Miccoli, I., Edler, F., Pfnür, H. & Tegenkamp, C. The 100th anniversary of the four-point probe technique: the role of probe geometries in isotropic and anisotropic systems. J. Phys. Condens. Matter 27, 223201 (2015).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • link