May 23, 2025

Flex Tech

Innovation in Every Curve

Long-term stability strategies of deep brain flexible neural interface

Long-term stability strategies of deep brain flexible neural interface
  • Zhao, Z. et al. Ultraflexible electrode arrays for months-long high-density electrophysiological mapping of thousands of neurons in rodents. Nat. Biomed. Eng. 7, 520–532 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Oganesian, L. L. & Shanechi, M. M. Brain–computer interfaces for neuropsychiatric disorders. Nat. Rev. Bioeng. 2, 653–670 (2024).

    Article 
    CAS 

    Google Scholar 

  • Tang, X., Shen, H., Zhao, S., Li, N. & Liu, J. Flexible brain–computer interfaces. Nat. Electron 6, 109–118 (2023).

    Article 

    Google Scholar 

  • Wang, J. et al. Flexible electrodes for brain–computer interface system. Adv. Mater. 35, 2211012 (2023).

    Article 
    CAS 

    Google Scholar 

  • Rivnay, J., Wang, H., Fenno, L., Deisseroth, K. & Malliaras, G. G. Next-generation probes, particles, and proteins for neural interfacing. Sci. Adv. 3, e1601649 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Salatino, J. W., Ludwig, K. A., Kozai, T. D. Y. & Purcell, E. K. Glial responses to implanted electrodes in the brain. Nat. Biomed. Eng. 1, 862–877 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Skaper, S. D., Facci, L., Zusso, M. & Giusti, P. An inflammation-centric view of neurological disease: beyond the neuron. Front. Cell. Neurosci. 12, 72 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, N. et al. Electrode materials for brain–machine interface: a review. InfoMat 3, 1174–1194 (2021).

    Article 
    CAS 

    Google Scholar 

  • Shen, K., Chen, O., Edmunds, J. L., Piech, D. K. & Maharbiz, M. M. Translational opportunities and challenges of invasive electrodes for neural interfaces. Nat. Biomed. Eng. 7, 424–442 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Wang, Y., Yang, X., Zhang, X., Wang, Y. & Pei, W. Implantable intracortical microelectrodes: reviewing the present with a focus on the future. Microsyst. Nanoeng. 9, 7 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lyu, J. et al. Microglial responses to brain injury and disease: functional diversity and new opportunities. Transl. Stroke Res. 12, 474–495 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Oakes, R. S., Polei, M. D., Skousen, J. L. & Tresco, P. A. An astrocyte derived extracellular matrix coating reduces astrogliosis surrounding chronically implanted microelectrode arrays in rat cortex. Biomaterials 154, 1–11 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • He, Y., Liu, X. & Chen, Z. Glial scar—a promising target for improving outcomes after CNS injury. J. Mol. Neurosci. 70, 340–352 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Song, E., Li, J., Won, S. M., Bai, W. & Rogers, J. A. Materials for flexible bioelectronic systems as chronic neural interfaces. Nat. Mater. 19, 590–603 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gulino, M., Kim, D., Pané, S., Santos, S. D. & Pêgo, A. P. Tissue response to neural implants: the use of model systems toward new design solutions of implantable microelectrodes. Front. Neurosci. 13, 689 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, Y. et al. How is flexible electronics advancing neuroscience research? Biomaterials 268, 120559 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Servais, B., Mahmoudi, N., Gautam, V. & Tong, W. Engineering brain-on-a-chip platforms. Nat. Rev. Bioeng. 2, 691–709 (2024).

    Article 
    CAS 

    Google Scholar 

  • Lecomte, A., Descamps, E. & Bergaud, C. A review on mechanical considerations for chronically-implanted neural probes. J. Neural Eng. 15, 031001 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Seo, K. J. et al. A soft, high-density neuroelectronic array. npj Flex. Electron 7, 40 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hong, G. & Lieber, C. M. Novel electrode technologies for neural recordings. Nat. Rev. Neurosci. 20, 330–345 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, Y. et al. Flexible electronic-photonic 3D integration from ultrathin polymer chiplets. npj Flex. Electron 8, 61 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hong, G., Yang, X., Zhou, T. & Lieber, C. M. Mesh electronics: a new paradigm for tissue-like brain probes. Curr. Opin. Neurobiol. 50, 33–41 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mo, F. et al. Single-neuron detection of place cells remapping in short-term memory using motion microelectrode arrays. Biosens. Bioelectron. 217, 114726 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yang, X. et al. Bioinspired neuron-like electronics. Nat. Mater. 18, 510–517 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Du, Z. J. et al. Ultrasoft microwire neural electrodes improve chronic tissue integration. Acta Biomater. 53, 46–58 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tian, Y. et al. An ultraflexible electrode array for large‐scale chronic recording in the nonhuman primate brain. Adv. Sci. 10, 2302333 (2023).

    Article 

    Google Scholar 

  • Lee, K. et al. Flexible, scalable, high channel count stereo-electrode for recording in the human brain. Nat. Commun. 15, 218 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, J. H. et al. Flexible deep brain neural probe for localized stimulation and detection with metal guide. Biosens. Bioelectron. 117, 436–443 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ferro, M. D. et al. NeuroRoots, a bio-inspired, seamless Brain Machine Interface device for long-term recording. AIP Adv. 14, 085109 (2024).

  • Wang, Y. et al. Flexible multichannel electrodes for acute recording in nonhuman primates. Microsyst. Nanoeng. 9, 93 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fu, T.-M. et al. Stable long-term chronic brain mapping at the single-neuron level. Nat. Methods 13, 875–882 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Du Roure, O. et al. Force mapping in epithelial cell migration. Proc. Natl. Acad. Sci. USA 102, 2390–2395 (2005).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Luan, L. et al. Ultraflexible nanoelectronic probes form reliable, glial scar–free neural integration. Sci. Adv. 3, e1601966 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wei, X. et al. Nanofabricated ultraflexible electrode arrays for high‐density intracortical recording. Adv. Sci. 5, 1700625 (2018).

    Article 

    Google Scholar 

  • Wei, C. et al. Distributed implantation of a flexible microelectrode array for neural recording. Microsyst. Nanoeng. 8, 50 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Musk, E. & Neuralink. An integrated brain-machine interface platform with thousands of channels. J. Med. Internet Res. 21, e16194 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, J. M. et al. Scalable three-dimensional recording electrodes for probing biological tissues. Nano Lett. 22, 4552–4559 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lee, J. M. The ultra-thin, minimally invasive surface electrode array NeuroWeb for probing neural activity. Nature Communications (2023).

  • Chik, G. K. K. et al. Flexible multichannel neural probe developed by electropolymerization for localized stimulation and sensing. Adv. Mater. Technol. 7, 2200143 (2022).

    Article 
    CAS 

    Google Scholar 

  • Zhao, S. et al. Tracking neural activity from the same cells during the entire adult life of mice. Nat. Neurosci. 26, 696–710 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hong, G. et al. Tissue-like neural probes for understanding and modulating the brain. Biochemistry 57, 3995–4004 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hong, G. et al. Syringe injectable electronics: precise targeted delivery with quantitative input/output connectivity. Nano Lett. 15, 6979–6984 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Lee, J. M. et al. Nanoenabled direct contact interfacing of syringe-injectable mesh electronics. Nano Lett. 19, 5818–5826 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, J. M. et al. Stitching flexible electronics into the brain. Adv. Sci. 10, 2300220 (2023).

    Article 
    CAS 

    Google Scholar 

  • Xiang, Z., Liu, J. & Lee, C. A flexible three-dimensional electrode mesh: An enabling technology for wireless brain–computer interface prostheses. Microsyst. Nanoeng. 2, 16012 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, S. H. et al. Scalable thousand channel penetrating microneedle arrays on flex for multimodal and large area coverage brainmachine interfaces. Adv. Funct. Mater. 32, 2112045 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kang, Y. N., Chou, N., Jang, J.-W., Choe, H. K. & Kim, S. A 3D flexible neural interface based on a microfluidic interconnection cable capable of chemical delivery. Microsyst. Nanoeng. 7, 66 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Merken, L., Schelles, M., Ceyssens, F., Kraft, M. & Janssen, P. Thin flexible arrays for long-term multi-electrode recordings in macaque primary visual cortex. J. Neural Eng. 19, 066039 (2022).

    Article 

    Google Scholar 

  • Lee, J. Y. et al. Foldable three dimensional neural electrode arrays for simultaneous brain interfacing of cortical surface and intracortical multilayers. npj Flex. Electron 6, 86 (2022).

    Article 

    Google Scholar 

  • Yang, Y. et al. Ultraflexible neural probes for multidirectional neuronal activity recordings over large spatial and temporal scales. Nano Lett. 23, 8568–8575 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Opie, N. L. et al. Focal stimulation of the sheep motor cortex with a chronically implanted minimally invasive electrode array mounted on an endovascular stent. Nat. Biomed. Eng. 2, 907–914 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Oxley, T. J. et al. Minimally invasive endovascular stent-electrode array for high-fidelity, chronic recordings of cortical neural activity. Nat. Biotechnol. 34, 320–327 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pancaldi, L. et al. Flow driven robotic navigation of microengineered endovascular probes. Nat. Commun. 11, 6356 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, A. et al. Ultraflexible endovascular probes for brain recording through micrometer-scale vasculature. Science 381, 306–312 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, H., Wang, J. & Fang, Y. Bioinspired flexible electronics for seamless neural interfacing and chronic recording. Nanoscale Adv. 2, 3095–3102 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lv, S. et al. Tentacle microelectrode arrays uncover soft boundary neurons in hippocampal CA1. Adv. Sci 2401670 (2024).

  • Fan, P. et al. Flexible microelectrode array probe for simultaneous detection of neural discharge and dopamine in striatum of mice aversion system. Sens. Actuators B Chem. 390, 133990 (2023).

    Article 
    CAS 

    Google Scholar 

  • Pas, J. et al. A bilayered PVA/PLGA-bioresorbable shuttle to improve the implantation of flexible neural probes. J. Neural Eng. 15, 065001 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Zhou, Y. et al. A silk-based self-adaptive flexible opto-electro neural probe. Microsyst. Nanoeng. 8, 118 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guan, S. et al. Elastocapillary self-assembled neurotassels for stable neural activity recordings. Sci. Adv. 5, eaav2842 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cointe, C. et al. Scalable batch fabrication of ultrathin flexible neural probes using a bioresorbable silk layer. Microsyst. Nanoeng. 8, 21 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lecomte, A. et al. Silk and PEG as means to stiffen a parylene probe for insertion in the brain: toward a double time-scale tool for local drug delivery. J. Micromech. Microeng. 25, 125003 (2015).

    Article 

    Google Scholar 

  • Wen, D.-L. et al. Recent progress in silk fibroin-based flexible electronics. Microsyst. Nanoeng. 7, 35 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rauhala, O. J. et al. Chitosan‐based, biocompatible, solution processable films for in vivo localization of neural interface devices. Adv. Mater. Technol. 5, 1900663 (2020).

    Article 
    CAS 

    Google Scholar 

  • Ojeda-Hernández, D. D., Canales-Aguirre, A. A., Matias-Guiu, J., Gomez-Pinedo, U. & Mateos-Díaz, J. C. Potential of chitosan and its derivatives for biomedical applications in the central nervous system. Front. Bioeng. Biotechnol. 8, 389 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xie, C. et al. Three-dimensional macroporous nanoelectronic networks as minimally invasive brain probes. Nat. Mater. 14, 1286–1292 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wen, X. et al. Flexible, multifunctional neural probe with liquid metal enabled, ultra-large tunable stiffness for deep-brain chemical sensing and agent delivery. Biosens. Bioelectron. 131, 37–45 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Villa, J., Cury, J., Kessler, L., Tan, X. & Richter, C.-P. Enhancing biocompatibility of the brain-machine interface: a review. Bioact. Mater. 42, 531–549 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sayyad, P. W., Park, S.-J. & Ha, T.-J. Bioinspired nanoplatforms for human-machine interfaces: recent progress in materials and device applications. Biotechnol. Adv. 70, 108297 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kämmerling, L. et al. Mitigating the foreign body response through ‘immune-instructive’ biomaterials. J. Immunol. Regenerative Med. 12, 100040 (2021).

    Article 

    Google Scholar 

  • Song, I. & Dityatev, A. Crosstalk between glia, extracellular matrix and neurons. Brain Res. Bull. 136, 101–108 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chelyshev, Y. A., Kabdesh, I. M. & Mukhamedshina, Y. O. Extracellular matrix in neural plasticity and regeneration. Cell Mol. Neurobiol. 42, 647–664 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Amini, S., Salehi, H., Setayeshmehr, M. & Ghorbani, M. Natural and synthetic polymeric scaffolds used in peripheral nerve tissue engineering: Advantages and disadvantages. Polym. Adv. Technol. 32, 2267–2289 (2021).

    Article 
    CAS 

    Google Scholar 

  • Vitale, F. et al. Biomimetic extracellular matrix coatings improve the chronic biocompatibility of microfabricated subdural microelectrode arrays. PLoS ONE 13, e0206137 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, C. D. et al. Matrigel coatings for Parylene sheath neural probes. J. Biomed. Mater. Res 104, 357–368 (2016).

    Article 
    CAS 

    Google Scholar 

  • Qi, Y., Kang, S.-K., Fang, H. & Editors, Guest Advanced materials for implantable neuroelectronics. MRS Bull. 48, 475–483 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • He, W., McConnell, G. C. & Bellamkonda, R. V. Nanoscale laminin coating modulates cortical scarring response around implanted silicon microelectrode arrays. J. Neural Eng. 3, 316–326 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Ghane-Motlagh, B. et al. Physicochemical properties of peptide-coated microelectrode arrays and their in vitro effects on neuroblast cells. Mat. Sci. Eng. C 68, 642–650 (2016).

    Article 
    CAS 

    Google Scholar 

  • Tarus, D. et al. Design of hyaluronic acid hydrogels to promote neurite outgrowth in three dimensions. ACS Appl. Mater. Interfaces 8, 25051–25059 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hu, Y. et al. Resilient and self-healing hyaluronic acid/chitosan hydrogel with ion conductivity, low water loss, and freeze-tolerance for flexible and wearable strain sensor. Front. Bioeng. Biotechnol. 10, 837750 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Swingler, S. et al. Recent advances and applications of bacterial cellulose in biomedicine. Polymers 13, 412 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Robbins, M. et al. Biofunctionalised bacterial cellulose scaffold supports the patterning and expansion of human embryonic stem cell-derived dopaminergic progenitor cells. Stem Cell Res Ther. 12, 574 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, J. et al. Bacterial cellulose as a supersoft neural interfacing substrate. ACS Appl. Mater. Interfaces 10, 33049–33059 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kozai, T. D. Y. et al. Chronic in vivo evaluation of PEDOT/CNT for stable neural recordings. IEEE Trans. Biomed. Eng. 63, 111–119 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Li, X. et al. Flexible electrocorticography electrode array for epileptiform electrical activity recording under glutamate and GABA modulation on the primary somatosensory cortex of rats. Micromachines 11, 732 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, X. et al. PDMS–parylene hybrid, flexible micro-ECoG electrode array for spatiotemporal mapping of epileptic electrophysiological activity from multicortical brain regions. ACS Appl. Bio Mater. 4, 8013–8022 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lim, J. et al. Hybrid graphene electrode for the diagnosis and treatment of epilepsy in free-moving animal models. NPG Asia Mater. 15, 7 (2023).

    Article 

    Google Scholar 

  • Park, S. et al. Adaptive and multifunctional hydrogel hybrid probes for long-term sensing and modulation of neural activity. Nat. Commun. 12, 3435 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, K. et al. Electrodeposition of alginate with PEDOT/PSS coated MWCNTs to make an interpenetrating conducting hydrogel for neural interface. Compos 26, 27–40 (2019).

    Google Scholar 

  • Rinoldi, C. et al. In vivo chronic brain cortex signal recording based on a soft conductive hydrogel biointerface. ACS Appl. Mater. Interfaces 15, 6283–6296 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lee, Y. et al. A lubricated nonimmunogenic neural probe for acute insertion trauma minimization and long‐term signal recording. Adv. Sci. 8, 2100231 (2021).

    Article 
    CAS 

    Google Scholar 

  • Sung, C. et al. Multimaterial and multifunctional neural interfaces: from surface-type and implantable electrodes to fiber-based devices. J. Mater. Chem. B 8, 6624–6666 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ziai, Y. et al. Conducting polymer‐based nanostructured materials for brain–machine interfaces. WIRES Nanomed. Nanobi 15, e1895 (2023).

    Article 
    CAS 

    Google Scholar 

  • Qazi, R. et al. Wireless optofluidic brain probes for chronic neuropharmacology and photostimulation. Nat. Biomed. Eng. 3, 655–669 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Seyfoddin, A. et al. Electro-responsive macroporous polypyrrole scaffolds for triggered dexamethasone delivery. Eur. J. Pharm. Biopharm. 94, 419–426 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wadhwa, R., Lagenaur, C. F. & Cui, X. T. Electrochemically controlled release of dexamethasone from conducting polymer polypyrrole coated electrode. J. Control Release 110, 531–541 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kim, D., Abidian, M. & Martin, D. C. Conducting polymers grown in hydrogel scaffolds coated on neural prosthetic devices. J. Biomed. Mater. Res. 71A, 577–585 (2004).

    Article 
    CAS 

    Google Scholar 

  • Wu, C. et al. Electrochemical deposition of Ppy/Dex/ECM coatings and their regulation on cellular responses through electrical controlled drug release. Colloids Surf. B 222, 113016 (2023).

    Article 
    CAS 

    Google Scholar 

  • Abidian, M. R., Kim, D. ‐H. & Martin, D. C. Conducting‐polymer nanotubes for controlled drug release. Adv. Mater. 18, 405–409 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Abidian, M. R. & Martin, D. C. Multifunctional nanobiomaterials for neural interfaces. Adv. Funct. Mater. 19, 573–585 (2009).

    Article 
    CAS 

    Google Scholar 

  • Kim, D.-H. & Martin, D. C. Sustained release of dexamethasone from hydrophilic matrices using PLGA nanoparticles for neural drug delivery. Biomaterials 27, 3031–3037 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bagheri, B. et al. Self-gelling electroactive hydrogels based on chitosan–aniline oligomers/agarose for neural tissue engineering with on-demand drug release. Colloids Surf. B 184, 110549 (2019).

    Article 
    CAS 

    Google Scholar 

  • Heo, D. N. et al. Multifunctional hydrogel coatings on the surface of neural cuff electrode for improving electrode-nerve tissue interfaces. Acta Biomater. 39, 25–33 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhong, Y. & Bellamkonda, R. V. Controlled release of anti-inflammatory agent α-MSH from neural implants. J. Control Release 106, 309–318 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Eles, J. R. et al. Neuroadhesive L1 coating attenuates acute microglial attachment to neural electrodes as revealed by live two-photon microscopy. Biomaterials 113, 279–292 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Azemi, E., Lagenaur, C. F. & Cui, X. T. The surface immobilization of the neural adhesion molecule L1 on neural probes and its effect on neuronal density and gliosis at the probe/tissue interface. Biomaterials 32, 681–692 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cui, X. In vivo studies of polypyrrole/peptide coated neural probes. Biomaterials 24, 777–787 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Righi, M. et al. Peptide-based coatings for flexible implantable neural interfaces. Sci. Rep. 8, 502 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kil, D. et al. Dextran as a resorbable coating material for flexible neural probes. Micromachines 10, 61 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zou, Y. et al. Anti-fouling peptide functionalization of ultraflexible neural probes for long-term neural activity recordings in the brain. Biosens. Bioelectron. 192, 113477 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Povlich, L. K. et al. Synthesis, copolymerization and peptide-modification of carboxylic acid-functionalized 3,4-ethylenedioxythiophene (EDOTacid) for neural electrode interfaces. BBA-Gen. Subj. 1830, 4288–4293 (2013).

    Article 
    CAS 

    Google Scholar 

  • Aregueta-Robles, U. A., Woolley, A. J., Poole-Warren, L. A., Lovell, N. H. & Green, R. A. Organic electrode coatings for next-generation neural interfaces. Front. Neuroeng. 7, (2014).

  • Bhagwat, N., Murray, R. E., Shah, S. I., Kiick, K. L. & Martin, D. C. Biofunctionalization of PEDOT films with laminin-derived peptides. Acta Biomater. 41, 235–246 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nam, J. et al. Supramolecular peptide hydrogel-based soft neural interface augments brain signals through a three-dimensional electrical network. ACS Nano 14, 664–675 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kozai, T. D. Y., Jaquins-Gerstl, A. S., Vazquez, A. L., Michael, A. C. & Cui, X. T. Brain tissue responses to neural implants impact signal sensitivity and intervention strategies. ACS Chem. Neurosci. 6, 48–67 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Steinmetz, N. A. et al. Neuropixels 2.0: A miniaturized high-density probe for stable, long-term brain recordings. Science 372, eabf4588 (2021).

  • Liu, Y. et al. A high-density 1,024-channel probe for brain-wide recordings in non-human primates. Nat. Neurosci. 27, 1620–1631 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhou, Y. et al. A mosquito mouthpart-like bionic neural probe. Microsyst. Nanoeng. 9, 88 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wei, S. et al. Shape-changing electrode array for minimally invasive large-scale intracranial brain activity mapping. Nat. Commun. 15, 715 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cho, M. et al. Fully bioresorbable hybrid opto-electronic neural implant system for simultaneous electrophysiological recording and optogenetic stimulation. Nat. Commun. 15, 2000 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • link