January 13, 2025

Flex Tech

Innovation in Every Curve

Sustainable, cytocompatible and flexible electronics on potato starch-based films

Sustainable, cytocompatible and flexible electronics on potato starch-based films
  • Guo, Z. et al. Kirigami-based stretchable, deformable, ultralight thin-film thermoelectric generator for BodyNET application. Adv. Energy Mater. 12, 2102993 (2022).

    Article 
    CAS 

    Google Scholar 

  • Liu, K., Ouyang, B., Guo, X., Guo, Y. & Liu, Y. Advances in flexible organic field-effect transistors and their applications for flexible electronics. npj Flex. Electron. 6, 1 (2022).

    Article 

    Google Scholar 

  • Li, D. et al. 704738 (1 of 24) printable transparent conductive films for flexible electronics. Adv. Mater. (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chang, W. S., Chang, T. S., Wang, C. M. & Liao, W. S. Metal-free transparent three-dimensional flexible electronics by selective molecular bridges. ACS Appl. Mater. Interfaces. 14, 22826–22837 (2022).

    Article 
    CAS 

    Google Scholar 

  • Mu, B. et al. Inkjet direct printing approach for flexible electronic. Results Eng. 14, 100466 (2022).

    Article 
    CAS 

    Google Scholar 

  • Kralj, M. et al. Conductive inks based on melamine intercalated graphene nanosheets for inkjet printed flexible electronics. Nanomaterials 12, 2936 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tafreshi, O. A. et al. Novel, flexible, and transparent thin film polyimide aerogels with enhanced thermal insulation and high service temperature. J. Mater. Chem. C 10, 5088–5108 (2022).

    Article 
    CAS 

    Google Scholar 

  • Tafreshi, O. A. et al. Flexible and shape-configurable PI composite aerogel films with tunable dielectric properties. Compos. Commun. 34, 101274 (2022).

    Article 

    Google Scholar 

  • Guan, Y. et al. A novel composite material for flexible wearable devices based on eutectic gallium indium (EGaIn), multi-walled carbon nanotubes (MWCNTs) and polydimethylsiloxane (PDMS). Compos. Struct. 291, 115653 (2022).

    Article 
    CAS 

    Google Scholar 

  • Hartmann, F., Baumgartner, M. & Kaltenbrunner, M. Becoming sustainable, the new Frontier in soft robotics. Adv. Mater. (2021).

    Article 
    PubMed 

    Google Scholar 

  • Surendren, A., Mohanty, A. K., Liu, Q. & Misra, M. Green Chemistry CRITICAL REVIEW A review of biodegradable thermoplastic starches, their blends and composites: recent developments and opportunities for single-use plastic packaging alternatives. Green Chem. (2022).

    Article 

    Google Scholar 

  • Khan, B., Khan, Bilal, Niazi, M., Samin, G. & Jahan, Z. Thermoplastic starch: A possible biodegradable food packaging material—A review. J. Food Process Eng. 40, e12447 (2017).

    Article 

    Google Scholar 

  • Fakhouri, F. M., Martelli, S. M., Caon, T., Velasco, J. I. & Mei, L. H. I. Edible films and coatings based on starch/gelatin: Film properties and effect of coatings on quality of refrigerated Red Crimson grapes. Postharv. Biol. Technol. 109, 57–64 (2015).

    Article 
    CAS 

    Google Scholar 

  • Ogunsona, E., Ojogbo, E. & Mekonnen, T. Advanced material applications of starch and its derivatives. Eur. Polym. J. 108, 570–581 (2018).

    Article 
    CAS 

    Google Scholar 

  • Ray, R., Narayan Das, S. & Das, A. Mechanical, thermal, moisture absorption and biodegradation behaviour of date palm leaf reinforced PVA/starch hybrid composites. Mater. Today Proc. 41, 376–381 (2021).

    Article 
    CAS 

    Google Scholar 

  • A’yun, A. Q. & Bintoro, N. The effect of starch proportion in coating materials and storage temperatures on the physical qualities of curly green chili (Capsicum annuum L.). IOP Conf. Ser. Earth Environ. Sci. 828, 012040 (2021).

    Article 

    Google Scholar 

  • Castro, J. I., Navia-Porras, D. P., Arbeláez Cortés, J. A., Mina Hernández, J. H. & Grande-Tovar, C. D. Synthesis, characterization, and optimization studies of starch/chicken gelatin composites for food-packaging applications. Molecules 27, 2264 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • de Sousa, A. et al. Thermoplastic starch nanocomposites: Sources, production and applications-a review. J. Biomater. Sci. Polym. Edition 33, 900–945 (2022).

    Article 

    Google Scholar 

  • Xiang, H. et al. Green flexible electronics based on starch. npj Flex. Electron. 6, 1–16 (2022).

    Article 

    Google Scholar 

  • Lu, J. et al. Highly tough, freezing-tolerant, healable and thermoplastic starch/poly(vinyl alcohol) organohydrogels for flexible electronic devices. J. Mater. Chem. A 9, 18406–18420 (2021).

    Article 
    CAS 

    Google Scholar 

  • Zhu, Z., Xia, K., Xu, Z., Lou, H. & Zhang, H. Starch paper-based triboelectric nanogenerator for human perspiration sensing. Nanoscale Res. Lett. 13, 365 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bao, Y., Wang, R., Lu, Y. & Wu, W. Lignin biopolymer based triboelectric nanogenerators. APL Mater. 5, 074109 (2017).

    Article 
    ADS 

    Google Scholar 

  • Ccorahua, R., Huaroto, J., Luyo, C., Quintana, M. & Vela, E. A. Enhanced-performance bio-triboelectric nanogenerator based on starch polymer electrolyte obtained by a cleanroom-free processing method. Nano Energy 59, 610–618 (2019).

    Article 
    CAS 

    Google Scholar 

  • Hafizulhaq, F., Abral, H., Kasim, A., Arief, S. & Affi, J. Moisture absorption and opacity of starch-based biocomposites reinforced with cellulose fiber from Bengkoang. Fibers 6, 62 (2018).

    Article 
    CAS 

    Google Scholar 

  • Khandelwal, G., Joseph Raj, N. P. M., Alluri, N. R. & Kim, S.-J. Enhancing hydrophobicity of starch for biodegradable material-based triboelectric nanogenerators. ACS Sustain. Chem. Eng. 9, 9011–9017 (2021).

    Article 
    CAS 

    Google Scholar 

  • Bacalzo, N. P. Jr. et al. Controlled microwave-hydrolyzed starch as a stabilizer for green formulation of aqueous gold nanoparticle ink for flexible printed electronics. ACS Appl. Nano Mater. 1, 1247–1256 (2018).

    Article 
    CAS 

    Google Scholar 

  • Majee, S. et al. Highly conductive films by rapid photonic annealing of inkjet printable starch-graphene ink. Adv. Mater. Interfaces 9, 2101884 (2022).

    Article 
    CAS 

    Google Scholar 

  • Jeong, H. et al. Novel eco-friendly starch paper for use in flexible, transparent, and disposable organic electronics. Adv. Funct. Mater. 28, 1704433 (2018).

    Article 

    Google Scholar 

  • Heidarian, P. & Kouzani, A. Z. Starch-g-acrylic acid/magnetic nanochitin self-healing ferrogels as flexible soft strain sensors. Sensors 23, 1138 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, C.-C., Liang, J., Liao, Y.-H. & Lu, S.-Y. 3D porous graphene nanostructure from a simple, fast, scalable process for high performance flexible gel-type supercapacitors. ACS Sustain. Chem. Eng. 5, 4457–4467 (2017).

    Article 
    CAS 

    Google Scholar 

  • Yang, C., Ping Wong, C. & Yuen, M. M. F. Printed electrically conductive composites: conductive filler designs and surface engineering. J. Mater. Chem. C 1, 4052–4069 (2013).

    Article 
    CAS 

    Google Scholar 

  • Cano-Raya, C., Denchev, Z. Z., Cruz, S. F. & Viana, J. C. Chemistry of solid metal-based inks and pastes for printed electronics—A review. Appl. Mater. Today 15, 416–430 (2019).

    Article 

    Google Scholar 

  • Räägel, H. et al. Medical device industry approaches for addressing sources of failing cytotoxicity scores. Biomed. Instrum. Technol. 55, 69–84 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Żołek-Tryznowska, Z. & Holica, J. Starch films as an environmentally friendly packaging material: Printing performance. J. Clean. Prod. 276, 124265 (2020).

    Article 

    Google Scholar 

  • International Standard. Tests for in vitro cytotoxicity. ISO 10993-5:2009(E). Switzerland.

  • Talja, R. A., Helén, H., Roos, Y. H. & Jouppila, K. Effect of various polyols and polyol contents on physical and mechanical properties of potato starch-based films. Carbohydr. Polym. 67, 288–295 (2007).

    Article 
    CAS 

    Google Scholar 

  • Izdebska-Podsiadły, J. Study of argon and oxygen mixtures in low temperature plasma for improving PLA film wettability. Coatings 13, 279 (2023).

    Article 

    Google Scholar 

  • Abdeltwab, E. & Atta, A. Plasma-induced modifications on high density polyethylene and polyethylene terephthalate. ECS J. Solid State Sci. Technol. 11, 043012 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Xu, X. et al. Construction of starch-sodium alginate interpenetrating polymer network and its effects on structure, cooking quality and in vitro starch digestibility of extruded whole buckwheat noodles. Food Hydrocoll. 143, 108876 (2023).

    Article 
    CAS 

    Google Scholar 

  • Yu, Z., Wang, Y.-S., Chen, H.-H. & Li, Q.-Q. Effect of sodium alginate on the gelatinization and retrogradation properties of two tuber starches. Cereal Chem. 95, 445–455 (2018).

    Article 
    CAS 

    Google Scholar 

  • Yang, K. et al. Influence of sodium alginate on the gelatinization, rheological, and retrogradation properties of rice starch. Int. J. Biol. Macromol. 185, 708–715 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lepak-Kuc, S., Nowicki, Ł, Janczak, D. & Jakubowska, M. The influence of the matrix selection and the unification process on the key parameters of the conductive graphene layers on a flexible substrate. Materials 16, 1238 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pepłowski, A. et al. Self-assembling graphene layers for electrochemical sensors printed in a single screen-printing process. Sensors 22, 8836 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lepak-Kuc, S. et al. Biodegradable conductive layers based on a biopolymer polyhydroxybutyrate/polyhydroxyvalerate and graphene nanoplatelets deposited by spray-coating technique. Coatings 13, 1791 (2023).

    Article 
    CAS 

    Google Scholar 

  • Reinhardt, K., Hofmann, N. & Eberstein, M. The importance of shear thinning, thixotropic and viscoelastic properties of thick film pastes to predict effects on printing performance. in 2017 21st European Microelectronics and Packaging Conference (EMPC) & Exhibition 1–7 (2017). https://doi.org/10.23919/EMPC.2017.8346831.

  • Tran, T. S., Dutta, N. K. & Choudhury, N. R. Graphene inks for printed flexible electronics: Graphene dispersions, ink formulations, printing techniques and applications. Adv. Colloid and Interface Sci. 261, 41–61 (2018).

    Article 
    CAS 

    Google Scholar 

  • Lin, H.-W., Chang, C.-P., Hwu, W.-H. & Ger, M.-D. The rheological behaviors of screen-printing pastes. J. Mater. Process. Technol. 197, 284–291 (2008).

    Article 
    CAS 

    Google Scholar 

  • Dybowska-Sarapuk, Ł., Janczak, D., Wróblewski, G., Słoma, M. & Jakubowska, M. The influence of graphene screen printing paste’s composition on its viscosity. in Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2015 vol. 9662 1193–1199 (SPIE, 2015).

  • Ding, C. et al. Durability study of thermal transfer printed textile electrodes for wearable electronic applications. ACS Appl. Mater. Interfaces 14, 29144–29155 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cannella, V. et al. Cytotoxicity evaluation of endodontic pins on L929 cell line. Biomed. Res. Int. 2019, 3469525 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • link