February 15, 2025

Flex Tech

Innovation in Every Curve

Room temperature compressed air-stable conductive copper films for flexible electronics

Room temperature compressed air-stable conductive copper films for flexible electronics
  • Haynes, W. M. (Ed.). CRC Handbook of Chemistry and Physics 97th Edn, (CRC Press, 2016).

  • Buga, C. S. & Viana, J. C. The role of printed electronics and related technologies in the development of smart connected products. Flex. Print. Electron. 7, 043001 (2022).

    Article 

    Google Scholar 

  • Wiklund, J. et al. A review on printed electronics: Fabrication methods, inks, substrates, applications and environmental impacts. J. Manuf. Mater. Process. 5, 89 (2021).

    CAS 

    Google Scholar 

  • Zeng, X. et al. Copper inks for printed electronics: a review. Nanoscale 14, 16003–16032 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, W. et al. The rise of conductive copper inks: challenges and perspectives. Appl. Mater. Today 18, 100451 (2020).

    Article 

    Google Scholar 

  • Jung, J. et al. Moiré-Free Imperceptible and Flexible Random Metal Grid Electrodes with Large Figure-of-Merit by Photonic Sintering Control of Copper Nanoparticles. ACS Appl. Mater. Interfaces 11, 15773–15780 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jang, Y. R. et al. A Review on Intense Pulsed Light Sintering Technologies for Conductive Electrodes in Printed Electronics. Int. J. Precis. Eng. Manuf. – Green. Technol. 8, 327–363 (2021).

    Article 

    Google Scholar 

  • Cano-Raya, C., Denchev, Z. Z., Cruz, S. F. & Viana, J. C. Chemistry of solid metal-based inks and pastes for printed electronics – A review. Appl. Mater. Today 15, 416–430 (2019).

    Article 

    Google Scholar 

  • Woo, K., Kim, Y., Lee, B., Kim, J. & Moon, J. Effect of carboxylic acid on sintering of inkjet-printed copper nanoparticulate films. ACS Appl. Mater. Interfaces 3, 2377–2382 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jeong, S. et al. Controlling the thickness of the surface oxide layer on Cu nanoparticles for the fabrication of conductive structures by ink-jet printing. Adv. Funct. Mater. 18, 679–686 (2008).

    Article 
    CAS 

    Google Scholar 

  • Stewart, I. E., Ye, S., Chen, Z., Flowers, P. F. & Wiley, B. J. Synthesis of Cu-Ag, Cu-Au, and Cu-Pt Core-Shell Nanowires and Their Use in Transparent Conducting Films. Chem. Mater. 27, 7788–7794 (2015).

    Article 
    CAS 

    Google Scholar 

  • Kim, T. G. et al. Enhanced Oxidation-Resistant Cu@Ni Core-Shell Nanoparticles for Printed Flexible Electrodes. ACS Appl. Mater. Interfaces 10, 1059–1066 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jeong, G. et al. A highly robust and stable graphene-encapsulated Cu-grid hybrid transparent electrode demonstrating superior performance in organic solar cells. J. Mater. Chem. A 6, 24805–24813 (2018).

    Article 
    CAS 

    Google Scholar 

  • Chen, Z., Ye, S., Stewart, I. E. & Wiley, B. J. Copper nanowire networks with transparent oxide shells that prevent oxidation without reducing transmittance. ACS Nano 8, 9673–9679 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cure, J. et al. Remarkable Decrease in the Oxidation Rate of Cu Nanocrystals Controlled by Alkylamine. Ligands J. Phys. Chem. C. 121, 5253–5260 (2017).

    Article 
    CAS 

    Google Scholar 

  • Tokura, R., Tsukamoto, H., Tokunaga, T., Nguyen, M. T. & Yonezawa, T. The role of surface oxides and stabilising carboxylic acids of copper nanoparticles during low-temperature sintering. Mater. Adv. 3, 4802–4812 (2022).

    Article 
    CAS 

    Google Scholar 

  • Dabera, G. et al. Retarding oxidation of copper nanoparticles without electrical isolation and the size dependence of work function. Nat. Commun. 8, 1894 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pereira, H. J., Killalea, C. E., & Amabilino, D. B. Low-Temperature Sintering of L-Alanine-Functionalized Metallic Copper Particles Affording Conductive Films with Excellent Oxidative Stability. ACS Appl. Electron. Mater. 4, 2502–2515 (2022).

  • Lai, H., Wen, J., Yang, G., Zhang, Y. & Cu, C. Mixed Cu Nanoparticles and Cu Microparticles with Promising Low-temperature and Low-pressure Sintering Properties and Inoxidizability for Microelectronic Packaging Applications. in 2021 22nd International Conference on Electronic Packaging Technology, ICEPT 2021 (Institute of Electrical and Electronics Engineers Inc., 2021). https://doi.org/10.1109/ICEPT52650.2021.9568089.

  • Seong, K. et al. An Ultradurable and Uniform Cu Electrode by Blending Carbon Nanotube Fillers in Copper-Based Metal-Organic Decomposition Ink for Flexible Printed Electronics. Adv. Mater. Interfaces 5, 1800502 (2018).

    Article 

    Google Scholar 

  • Yong, Y. et al. Effect of decomposition and organic residues on resistivity of copper films fabricated via low-temperature sintering of complex particle mixed dispersions. Sci. Rep. 7, 1–9 (2017).

    Article 

    Google Scholar 

  • Kanzaki, M., Kawaguchi, Y. & Kawasaki, H. Fabrication of Conductive Copper Films on Flexible Polymer Substrates by Low-Temperature Sintering of Composite Cu Ink in Air. ACS Appl. Mater. Interfaces 9, 20852–20858 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kim, S. J., Lee, J., Choi, Y. H., Yeon, D. H. & Byun, Y. Effect of copper concentration in printable copper inks on film fabrication. Thin Solid Films 520, 2731–2734 (2012).

    Article 
    CAS 

    Google Scholar 

  • Choi, Y. H. & Hong, S. H. Effect of the Amine Concentration on Phase Evolution and Densification in Printed Films Using Cu(II) Complex Ink. Langmuir 31, 8101–8110 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dai, X., Zhang, T., Shi, H., Zhang, Y. & Wang, T. Reactive Sintering of Cu Nanoparticles at Ambient Conditions for Printed Electronics. ACS Omega 5, 13416–13423 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • You, J. et al. Optical Detection of Copper Ions via Structural Dissociation of Plasmonic Sugar Nanoprobes. Anal. Chem. 94, 5521–5529 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jones, F., Cölfen, H. & Antonietti, M. Interaction of κ-carrageenan with nickel, cobalt, and iron hydroxides. Biomacromolecules 1, 556–563 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jones, F., Cölfen, H. & Antonietti, M. Iron oxyhydroxide colloids stabilized with polysaccharides. Colloid Polym. Sci. 278, 491–501 (2000).

    Article 
    CAS 

    Google Scholar 

  • Usov, A. I. Polysaccharides of the red algae. in Advances in Carbohydrate Chemistry and Biochemistry 65 115–217 (Academic Press Inc., 2011).

  • dos Santos, M. A. & Grenha, A. Polysaccharide Nanoparticles for Protein and Peptide Delivery: Exploring Less-Known Materials. in Advances in Protein Chemistry and Structural Biology 98 223–261 (Academic Press Inc., 2015).

  • Liew, J. W. Y., Loh, K. S., Ahmad, A., Lim, K. L. & Wan Daud, W. R. Synthesis and characterization of modified κ-carrageenan for enhanced proton conductivity as polymer electrolyte membrane. PLoS One 12, e0185313 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mangione, M. R., Giacomazza, D., Bulone, D., Martorana, V. & San Biagio, P. L. Thermoreversible gelation of κ-Carrageenan: Relation between conformational transition and aggregation. Biophys. Chem. 104, 95–105 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Platzman, I., Brener, R., Haick, H. & Tannenbaum, R. Oxidation of polycrystalline copper thin films at ambient conditions. J. Phys. Chem. C. 112, 1101–1108 (2008).

    Article 
    CAS 

    Google Scholar 

  • Choudhary, S. et al. Oxidation mechanism of thin Cu films: A gateway towards the formation of single oxide phase. AIP Adv. 8, 055114 (2018).

    Article 

    Google Scholar 

  • Gattinoni, C. & Michaelides, A. Atomistic details of oxide surfaces and surface oxidation: the example of copper and its oxides. Surf. Sci. Rep. 70, 424–447 (2015).

    Article 
    CAS 

    Google Scholar 

  • Tye, Y. Y., Abdul Khalil H. P. S., Kok, C. Y. & Saurabh, C. K. Preparation and characterization of modified and unmodified carrageenan based films. in IOP Conference Series: Materials Science and Engineering 368 012020 (Institute of Physics Publishing, 2018).

  • Lefez, B., Kartouni, K., Lenglet, M., Rönnow, D. & Ribbing, C. G. Application of reflectance spectrophotometry to the study of copper (I) oxides (Cu2O and Cu3O2) on metallic substrate. Surf. Interface Anal. 22, 451–455 (1994).

    Article 
    CAS 

    Google Scholar 

  • Biesinger, M. C. Advanced analysis of copper X-ray photoelectron spectra. Surf. Interface Anal. 49, 1325–1334 (2017).

    Article 
    CAS 

    Google Scholar 

  • Berton, S. B. R. et al. Properties of a commercial κ-carrageenan food ingredient and its durable superabsorbent hydrogels. Carbohydr. Res. 487, 107883 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, L. et al. FeS2/carbon hybrids on carbon cloth: A highly efficient and stable counter electrode for dye-sensitized solar cells. Sustain. Energy Fuels 3, 1749–1756 (2019).

    Article 
    CAS 

    Google Scholar 

  • Zhou, G. et al. Oxygen bridges between nio nanosheets and graphene for improvement of lithium storage. ACS Nano 6, 3214–3223 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, X. et al. Green Synthesis of Gold Nanoparticles Using Carrageenan Oligosaccharide and Their In Vitro Antitumor Activity. Mar. Drugs 16, 277 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gün Gök, Z., Karayel, M. & Yiğitoğlu, M. Synthesis of carrageenan coated silver nanoparticles by an easy green method and their characterization and antimicrobial activities. Res. Chem. Intermed. 47, 1843–1864 (2021).

    Article 

    Google Scholar 

  • Miccoli, I., Edler, F., Pfnür, H. & Tegenkamp, C. The 100th anniversary of the four-point probe technique: The role of probe geometries in isotropic and anisotropic systems. J. Phys. Condens. Matter 27, 223201 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Joo, S. J., Hwang, H. J. & Kim, H. S. Highly conductive copper nano/microparticles ink via flash light sintering for printed electronics. Nanotechnology 25, 265601 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Amert, A. K., Oh, D. H. & Kim, N. S. A simulation and experimental study on packing of nanoinks to attain better conductivity. in Journal of Applied Physics 108 102806 (American Institute of PhysicsAIP, 2010).

  • Woo, K., Kim, D., Kim, J. S., Lim, S. & Moon, J. Ink-jet printing of Cu-Ag-based highly conductive tracks on a transparent substrate. Langmuir 25, 429–433 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bakonyi, I. Accounting for the resistivity contribution of grain boundaries in metals: critical analysis of reported experimental and theoretical data for Ni and Cu. Eur. Phys. J. 136, 410 (2021).

    CAS 

    Google Scholar 

  • Kittel, C. Introduction to Solid State Physics Charles Kittel. 8 (2005).

  • Hill, R. M. Electrical conduction in ultra thin metal films I. Theoretical. Proc. R. Soc. Lond. A. Math. Phys. Sci. 309, 377–395 (1969).

    Article 
    CAS 

    Google Scholar 

  • Sheng, P., Abeles, B. & Arie, Y. Hopping conductivity in granular metals. Phys. Rev. Lett. 31, 44–47 (1973).

    Article 
    CAS 

    Google Scholar 

  • Dellinger, J. H. The temperature coefficient of resistance of copper. J. Frankl. Inst. 170, 213–216 (1910).

    Article 

    Google Scholar 

  • Warkusz, F. The size effect and the temperature coefficient of resistance in thin films. J. Phys. D: AppI. Phys. 11, 689 (1978).

  • Belser, R. B. & Hicklin, W. H. Temperature Coefficients of Resistance of Metallic Films in the Temperature Range 25° to 600 °C. J. Appl. Phys. 30, 313–322 (1959).

    Article 
    CAS 

    Google Scholar 

  • Gall, D. The search for the most conductive metal for narrow interconnect lines. J. Appl. Phys. 127, 50901 (2020).

    Article 
    CAS 

    Google Scholar 

  • Zeng, H. et al. Grain size-dependent electrical resistivity of bulk nanocrystalline Gd metals. Prog. Nat. Sci. Mater. Int. 23, 18–22 (2013).

    Article 

    Google Scholar 

  • Gao, Y. et al. Novel copper particle paste with self-reduction and self-protection characteristics for die attachment of power semiconductor under a nitrogen atmosphere. Mater. Des. 160, 1265–1272 (2018).

    Article 
    CAS 

    Google Scholar 

  • Jacob, U., Vancea, J. & Hoffmann, H. Surface-roughness contributions to the electrical resistivity of polycrystalline metal films. Phys. Rev. B 41, 11852 (1990).

    Article 
    CAS 

    Google Scholar 

  • West, P. R. et al. Searching for better plasmonic materials. Laser Photonics Rev. 4, 795–808 (2010).

    Article 
    CAS 

    Google Scholar 

  • Pereira, H. J. et al. Fabrication of Copper Window Electrodes with ≈10 8 Apertures cm −2 for Organic Photovoltaics. Adv. Funct. Mater. 28, 1802893 (2018).

    Article 

    Google Scholar 

  • Bellchambers, P. et al. Elucidating the exceptional passivation effect of 0.8 nm evaporated aluminium on transparent copper films. Front. Mater. 5, 71 (2018).

  • Brunetti, F. et al. Printed Solar Cells and Energy Storage Devices on Paper Substrates. Adv. Funct. Mater. 29, 1806798 (2019).

    Article 

    Google Scholar 

  • Yao, B. et al. Paper-Based Electrodes for Flexible Energy Storage Devices. Adv. Sci. 4, 1700107 (2017).

    Article 

    Google Scholar 

  • LaDou, J. Printed circuit board industry. Int. J. Hyg. Environ. Health 209, 211–219 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mirvakili, S. M., Broderick, K. & Langer, R. S. A New Approach for Microfabrication of Printed Circuit Boards with Ultrafine Traces. ACS Appl. Mater. Interfaces 11, 35376–35381 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Komolafe, A. et al. Integrating Flexible Filament Circuits for E-Textile Applications. Adv. Mater. Technol. 4, 1900176 (2019).

    Article 
    CAS 

    Google Scholar 

  • Kim, D. J. et al. Indium-free, highly transparent, flexible Cu2O/Cu/Cu2O mesh electrodes for flexible touch screen panels. Sci. Rep. 5, 1–10 (2015). 2015 51.

    Google Scholar 

  • Wang, B. Y., Yoo, T. H., Song, Y. W., Lim, D. S. & Oh, Y. J. Cu ion ink for a flexible substrate and highly conductive patterning by intensive pulsed light sintering. ACS Appl. Mater. Interfaces 5, 4113–4119 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Saleh, R., Barth, M., Eberhardt, W. & Zimmermann, A. Bending Setups for Reliability Investigation of Flexible Electronics. Micromachines 12, 1–22 (2021).

    Article 

    Google Scholar 

  • Yang, Y., Huang, Q., Payne, G. F., Sun, R. & Wang, X. A highly conductive, pliable and foldable Cu/cellulose paper electrode enabled by controlled deposition of copper nanoparticles. Nanoscale 11, 725–732 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schreck, M., Deshmukh, R., Tervoort, E. & Niederberger, M. Impregnation of Cellulose Fibers with Copper Colloids and Their Processing into Electrically Conductive Paper. Chem. Mater. 34, 43–52 (2022).

    Article 
    CAS 

    Google Scholar 

  • Pinto, R. J. B. et al. Highly Electroconductive Nanopapers Based on Nanocellulose and Copper Nanowires: A New Generation of Flexible and Sustainable Electrical Materials. ACS Appl. Mater. Interfaces 12, 34208–34216 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • De Vos, M., Torah, R., Beeby, S. & Tudor, J. Functional Electronic Screen-printing – Electroluminescent Lamps on Fabric. Procedia Eng. 87, 1513–1516 (2014).

    Article 

    Google Scholar 

  • De Vos, M., Torah, R. & Tudor, J. Dispenser printed electroluminescent lamps on textiles for smart fabric applications. Smart Mater. Struct. 25, 045016 (2016).

    Article 

    Google Scholar 

  • Daerr, A. & Mogne, A. Pendent_Drop: An ImageJ Plugin to Measure the Surface Tension from an Image of a Pendent Drop. J. Open Res. Softw. 4, 3 (2016).

    Article 

    Google Scholar 

  • link